(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(f(x, y)) → f(f(a, h(h(y))), x)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
h(f(x, y)) → f(f(a, h(h(y))), x)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
h(f(x, y)) → f(f(a, h(h(y))), x)
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
h
(6) Obligation:
TRS:
Rules:
h(
f(
x,
y)) →
f(
f(
a,
h(
h(
y))),
x)
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
Generator Equations:
gen_f:a2_0(0) ⇔ a
gen_f:a2_0(+(x, 1)) ⇔ f(a, gen_f:a2_0(x))
The following defined symbols remain to be analysed:
h
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
h(
gen_f:a2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
h(gen_f:a2_0(+(1, 0)))
Induction Step:
h(gen_f:a2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(f(a, h(h(gen_f:a2_0(+(1, n4_0))))), a) →IH
f(f(a, h(*3_0)), a)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
h(
f(
x,
y)) →
f(
f(
a,
h(
h(
y))),
x)
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
Lemmas:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f:a2_0(0) ⇔ a
gen_f:a2_0(+(x, 1)) ⇔ f(a, gen_f:a2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
h(
f(
x,
y)) →
f(
f(
a,
h(
h(
y))),
x)
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
Lemmas:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f:a2_0(0) ⇔ a
gen_f:a2_0(+(x, 1)) ⇔ f(a, gen_f:a2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)